Woven .vs. Needled

Woven .vs. Needled: Surface

DD-2000

Comments:

Both tests at 20 Kgf/cm²

Needled belt has smoother surface, resulting in 'darker' print test due higher points of contact instead of woven belt.

Woven .vs. Needled: Surface

Woven

Needlepunched

Samples Compressed at 4 Mpa average pressure Standard Deviation of In- Plane Pressure distribution: 4,80 MPa 4,24 MPa

Woven .vs. Needled: Surface

Woven

Needlepunched

Lower standard deviation of pressure

more uniform pressing

=

Woven .vs. Needled: Surface

Higher number of contact points and smoother surface imply:

- more uniform and better glueing
- better board printing
- ➤lower pressure required
- >better board to belt contact (i.e. better traction)

Woven .vs. Needled: Stability

Thanks to the high tension weaving, needling heatsetting and chemical bonding, Albany felt is extremely stable:

No elongation issues have ever been reported And and no reseaming is needed because of elongation.

Needled: Stability

At 10 kg/cm elongation is 0,3%

Needled: Stability

Tensile Strength	Kg/cm
DURADRY 1000	186
DURADRY 2000	312
IFS (stainless steel hooks)	178

